
 

Heat Capacity 

1.      What is molar heat capacity?   
 
The energy required to raise the temperature of 1 mol of a substance by 
1K.  Represented by, C. 
 

2.      What is specific heat capacity? 
 
The energy required to raise the temperature of 1 gram of a substance by 
1K.  Represented by, C. 
 

3.      The kinetic energy of a system is directly related to its temperature.  So if 
we heat a system we increase its kinetic energy. 
 

4.      What are two conditions under which a gas can be heated? 
 

a. Constant Volume.  Under these circumstances no work can be 
performed.  All the energy put into the system is in the form of heat 
energy. 
 

b. Constant Pressure.  Under these circumstances the energy put into 
the system is transformed into both heat and work energy.  This 
means that it would take more energy to heat a constant pressure 
system by the same amount as a constant volume system. 
 

5.      What are the values for: 
 

a. Cv = 3/2 R 
 

b. Cp = Cv + R = 5/2 R 
 



 

Where R = 8.3145 J / mol K 
 

6.      Why is Cv<Cp? 
 
Cp > Cv because energy gets used for heating and work in constant pressure 
situation.  Therefore you need the more energy for the same change in 
temperature. 
 

7.      When energy is added to a molecule there are three potential forms of 
motion that it can be transferred into: 
 

a. Translational – The molecule’s movement around the container 

 
          

b. Vibrational – The spring-like movement of the bond between atoms. 

 
 

c. Rotational – The spinning of the molecule on an axis. 

 
 

8.      Translational motion is the only motion that directly affects temperature. 
 

9.      The values 3/2 R and 5/2 R are only applicable to monatomic ideal gases. 
Why? 
 
A monatomic ideal gas is only capable of undergoing translational motion. 
Meaning that all the energy that goes to molecule (excluding the work 
aspect) goes towards a motion that will directly increase the temperature.  
Gases with more than one atom are able to undergo rotational and 



 

vibrational motion as well.  Because these 2 additional types of motion do 
not lend to an increase in temperature… more energy has to be put into 
compensate for the loss. 
 

10.      This means that the calculated molar heat capacities are often less than 
actual molar heat capacities. 
 

11.      What equation relates ΔE to heat capacity?  
 

 
 

a. Under what conditions can you use this equation? 
 
Under any all conditions.  ∆E is always tied to Cv. 
 

b. Under what conditions does ΔE = q? 
 
When the volume is constant. 
 

12.      What equation relates ΔH to heat capacity? 
 

 
 

a. Under what conditions can you use this equation? 
 
Under any all conditions.  ∆H is always tied to Cp. 
 

b. Under what conditions does ΔH=q? 
 
When the pressure is constant. 
 



 

13.      Which value of R do we use in these equations? 
 

 
 

14.      Fill in the chart. 
 

        
 

15.      Consider a sample containing 5 moles of a monatomic ideal gas that is 
taken from State A State B by 2 different paths.  For each step, assume 
that the external P is constant and equals the final P of the gas for that 
step.  Calculate the values of q, w, ΔH and ΔE for each step along the 2 
paths and the totals for the 2 paths.  What do the totals demonstrate? 
 
a. (PA= 3atm, VA=15L)  (PC=3atm, VC=55L)(PB=6atm, VB=20L) 
b. (PA= 3atm, VA=15L)  (PC=6atm, VC=15L)(PB=6atm, VB=20L) 
 

    



 

Path A  
 
        A  C   
 
The pressure is constant along this path. This tells us some important information. First 
it establishes which of the equations for q we will use.  We also know that under 
constant pressure circumstances q = ∆H.  So we know that the answer get applies to 
both.              

       
 
In this question they did not give us any information about the change in temperature.  
But because we are dealing with an ideal gas, we can use the ideal gas law to solve for 
the temperature at point A and point C.  We can then use those values to solve for ∆T.  
 

 
That means that  
 

     
 
Now we can plug in and solve: 
 

 
Remember there are two values for R 
 
In the Ideal Gas Law:    In all other equations: 

        
 
Now, let’s turn our attention to work. 
 

 
                 



 

Lastly, we will solve for ∆E.  We could use either ∆E = nCv∆T or ∆E = q +w 
Because we have already solved for q and w, I will use the latter. 
 

 
 
Now we perform the same calculations for the second step on the path. 
 
     C  B 
 
There isn’t a constant along this path.  That means that we cannot use the equations we 
have for q.  Both of the equations require something to be held constant.  So we will 
start with work.  

                  
I knew to use 6 atm for the pressure because the question stated “assume that the 
external P is constant and equals the final P of the gas for that step”. 
 
Next, let’s solve for ∆E.  Remember that, regardless of the conditions of the reaction, we 
can always use   

            
 
First, we must us the ideal gas law to obtain the relevant temperatures at point C and 
point B to solve for ∆T. 
 

        
                           
Now we can solve for ∆T 
 

     
 
Now we can plug into the expression for E and solve 



 

    
 

        
 
Plugging in our values, we get 

            
Lastly, we will solve for ∆H using the equation 
 

                  
Remember, this equation can be used regardless of conditions.  Because we already 
solved for ∆T from CB we can just plug into the equation and solve. 

 
Path B 
 
A  D 
 
The volume is constant along this path.  This information tells us some important facts. 
First, because there is no change in volume, there is no work, i.e. w = 0 
This establishes that ∆E = q.  Thus we will start our calculations using: 
 

         
          
Once again our first step is to determine the temperatures at point A and point D in 
order to determine ∆T. 

       
Thus 

       
 
We can now plug into the equation and solve for ∆E and q. 
 



 

    
Lastly, we can solve for ∆H using 
 

          
Plugging in we get 
 

    

 
      D  B 
 
The pressure is constant along this path. This tells us some important information. First 
it establishes which of the equations for q we will use.  We also know that under 
constant pressure circumstances q = ∆H.  So we know that the answer get applies to 
both. 

       
          
Once again our first step is to determine the temperatures at point D and point B in 
order to determine ∆T. 

            
Thus 

                       
 
Now we can plug in and solve 
 

   
 
Next we turn our attention to work. 
  

                     



 

 
Lastly, we will solve for ∆E.  We could use either ∆E = nCv∆T or ∆E = q +w 
Because we have already solved for q and w, I will use the latter. 

       

       
          
As you can see from the totals.  The values of q and w are path dependent.  But the 
values of ∆H and ∆E are path independent – exactly the same totals were obtained for 
path A and path B.   
 
 
 
 

 


